

"Designing CO Oxidation Catalyst for Your Permit Requirement"

Mr. Joshua D. Gillespie

February 5, 2015

Starting Point: Application Design (system variables that affect emissions)

Information input

- engine name and model
- fuel type(s) and sulfur content
- water injected or evap cooling? (water quality)
- HRSG or simple cycle (no. starts/stops/yr.)
- Duct firing? Fuel type.
- exhaust mass flow rate, catalyst operating temp,
- % flow and temperature variation
- Inlet emissions, (CO, VOC, NO/NO₂, SO₂)
- performance requirements
 - (<u>% reduction CO, VOC, NO-NO₂, SO₂-SO₃)</u>
 - Start-up & shutdown performance included?
- desired warranty period and service life
- installation information;
 - NEW or REPLACEMENT
 - Gas Path Size
 - allowable pressure drop

It's possible to "over specify":

- low temperature
- very high performance
- very low pressure drop
- small gas path
- lot's of starts & stops
- long warranty period
- "cheap"

THE POWER OF CATALYSIS

2

Catalyst Design (catalyst variables that affect emissions)

- substrate cell geometry and geometric surface area
- wash coat formulation & loading
- precious metal formulation
- precious metal loading
- method of applying precious metals
- gas hourly space velocity

CO Destruction Efficiency (%)

Low Catalyst Temps Impose Other Risks to Owner

- <u>BEWARE</u>: Below 600°F a number of contaminants are prone to accumulation
 - Even common masking agents (sulfur) could be problematic
 - If mixed with high temp cases, desorption is possible
- Of >240 installations the few that experienced high levels of contamination
 - All below 600°F
 - All accumulated enormous amounts of sulfur and phosphorous

Examples of Chemical Contamination

Selecting Precious Metals for Oxidation Catalyst

	Platinum	Palladium		
CO	Best	Good when new		
VOCs	Best	Good when new		
Light-off temp	250-400°F	400-650°F		
Catalytic activity	High	Moderate		
Thermal stability	Good to 1200°F	Good to 1200°F		
Poison resistance	High	Low		
Response to chemical washing	Good	Poor		
Durability	High	Low to moderate		
Price per troy oz.	\$1560	\$690		

Oxidation Performance Platinum vs. Palladium

10

Simultaneous Collateral Reactions

- NO-NO₂ Oxidation
 - Favors NO₂ at low temps; NO at high temps
 - Effects SCR reactions, NH₃ consumption
 - Destroys sulfur bound carbon nanoparticles
- SO₂-SO₃ Oxidation
 - Increases with temperature
 - Precursor to particulate matter
 - Ammonia slip reacts to form bi-sulfate particulate after SCR
- Catalyst formulations can suppress these

Overall Effect of Operating Temp on Catalyst Reactions

Putting it all together...

How does HRSG temperature effect catalyst design and price?

Effect of HRSG Temperature Zone on Oxidation Catalyst Performance

Effect of HRSG Temperature Zone on Oxidation Catalyst Performance

500-550°F

•Risk of sulfur accumulation with decreased life

 Increase Pt for low-T lightoff and protection from masking & poisoning

•Good CO performance

Lo VOC performance

Larger catalyst volume

•High NO to NO₂ conversion

•Low SO₂ to SO₃ conversion

Highest catalyst \$\$

Effect of HRSG Temperature Zone on Catalyst System Price

	550 F	790 F	1000 F
Catalyst GHSV*	175,000	200,000	215,000
Catalyst Volume	310 ft3 most catalyst due to lower activity	270 ft3	250 ft3 least catalyst due to high activity
Platinum Loading	~1.5X more Pt due to likely accumulation of contaminants	Х	Х
Frame Material	carbon steel	carbon steel	stainless steel

* Catalyst GHSV is approximate for illustration only, based upon a given cell density and formulation.

Effect of HRSG Temperature Zone on Catalyst System Price

Catalyst and frame prices are approximate for illustration only, based upon a given exhaust characteristic, catalyst design, gas path and Pt price. THE POWER OF CATALYSIS

Evaluate all operating cases (temp, flow, performance)

PARAMETER	Units	DESIGN BASIS	100	102	111	112	126	129
				E0%/	E0%/	100%	50%	E0%/
GT Load		0.50035542	100%	SU%	50%	100%	50%	50%
GT Fuel Type		Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Ambient Temp	۰F	20	60	60	100	0	80	100
Temp at Catalyst	۰F	832	835	824	900	845	908	977
EXHAUST CHARACTERISTICS FROM GT					500.005	074 400		100.000
GT Flow with Tempering Air	lb/hr	647,792	866,129	629,703	522,225	874,486	517,015	492,086
Gas Composition	% vol							
02		14.55	13.75	14.79	13.47	14.06	13.81	13.66
H2O		5.94	8.76	6.72	9.85	6.26	8.42	9.19
N2		75.65	73.54	74.87	72.70	75.58	73.81	73.20
CO2		2.95	3.07	2.72	3.09	3.19	3.07	3.07
Ar		0.91	0.89	0.90	0.87	0.90	0.88	0.88
Total		100.00	100.00	100.00	99.99	99.99	99.99	99.99
MW	lb/lb-mole	28.57	28.27	28.46	28.15	28.55	28.31	28.22
Flow Rate (wet)	scfh	8,593,971	11,610,925	8,384,926	7,030,717	11,607,285	6,922,442	6,608,366
Flow Rate (dry)	scfh	8,083,203	10,594,153	7,821,332	6,337,931	10,880,855	6,339,469	6,001,203
O2 Concentration Dry	%	15.47	15.07	15.85	14.95	15.00	15.08	15.04
CO AT CATALYST INLET								
CO as ppmvd at 15% O2		70.10	25.02	70.20	69.99	24.99	69.99	69.99
CO Flow	lb/hr	38.6	19.4	34.7	33.1	20.1	32.3	30.8
CO AT CATALYST OUTLET								
CO as ppmvd at 15% O2		5.5	5.5	5.5	5.5	5.5	5.5	5.5
CO Destruction Required	%	92.2	78.0	92.2	92.1	78.0	92.1	92.1
VOC AT CATALYST INLET								
VOC as ppmvd at 15% O2		8.41	3.00	8.42	8.40	3.00	8.40	8.40
VOC AT CATALYST OUTLET								
VOC as ppmvd at 15% O2		2.00	2.00	2.00	2.00	2.00	2.00	2.00
VOC Destruction Required	%	76.2	33.4	76.3	76.2	33.3	76.2	76.2
ADDITIONAL DATA								
Required Pressure Drop	"H₂O	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Expected Pressure Drop	"H ₂ O	0.7	1.0	0.7	0.7	1.0	0.7	0.7
	. 2							

DETERMINE "GHSV" FOR <u>EACH</u> FLOW RATE AND TEMPERATURE TO ACHIEVE REQUIRED CO & VOC PERFORMANCE

Determine "GHSV" for <u>each</u> flow rate & temp to achieve CO & VOC performance

PARAMETER	Units	DESIGN BASIS	100	102	111	112	126	129
CASE DESCRIPTION								
GENERAL INFORMATION								
GT Load		0.50035542	100%	50%	50%	100%	50%	50%
GT Fuel Type		Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Ambient Temp	۰F	20	60	60	100	0	80	100
Temp at Catalyst	۰F	832	835	824	955	845	958	977
EXHAUST CHARACTERISTICS FROM GT								
GT Flow with Tempering Air	lb/hr	647,792	866,129	629,703	522,225	874,486	517,015	492,086
Gas Composition	% vol							
02		14.55	13.75	14.79	13.47	14.06	13.81	13.66
H20		5.94	8,76	6.72	9.85	6.26	8.42	9,19
N2		75.65	73.54	74.87	72.70	75.58	73.81	73.20
C02		2.95	3.07	2.72	3.09	3.19	3.07	3.07
Ar		0.91	0.89	0.90	0.87	0.90	0.88	0.88
Total		100.00	100.00	100.00	99.99	99.99	99.99	99.99
MW	lb/lb-mole	28.57	28.27	28.46	28.15	28.55	28.31	28.22
Flow Rate (wet)	sofh	8,593,971	11,610,925	8,384,926	7,030,717	11,607,285	6,922,442	6,608,366
Flow Rate (dry)	sofh	8,083,203	10,594,153	7,821,332	6,337,931	10,880,855	6,339,469	6,001,203
02 Concentration Dry	x	15.47	15.07	15.85	14.95	15.00	15.08	15.04
CO AT CATALYST INLET								
CO as porryd at 15% 02		70.10	25.02	70.20	69.99	24.99	69.99	69.99
COAT CATALYST OUTLET								
CO as ppmvd at 15% 02		5.5	5.5	5.5	5.5	5.5	5.5	5.5
CO Destruction Required	x	92.2	78.0	92.2	92.1	78.0	92.1	92.1
VOCAT CATALYST INLET								
VOC as ppmvd at 15% 02		8.41	3.00	8.42	8.40	3.00	8.40	8.40
VOC AT CATALYST OUTLET								
VOC as ppmvd at 15% 02		2.00	2.00	2.00	2.00	2.00	2.00	2.00
VOC Destruction Required	x	76.2	33.4	76.3	76.2	33.3	76.2	76.2
ADDITIONAL DATA								
Descripted Description Description	211.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

Convert GHSV into catalyst volume

- GHSV varies by
 - performance level
 - compound
 - temperature
 - formulation and loading of precious metals
 - formulation of wash coating
- catalyst volume (*cubic feet*) calculated by dividing volumetric gas flow rate (*s-ft³/hr*) by GHSV (1/hr)

 $\frac{8,593,971 \text{ scfh}}{165,000 \text{ hr}^{-1}} = 52.1 \text{ ft}^3$

Calculate the required catalyst volume for each case

MW

VOC Des

Remember...

- Catalyst performance dictates catalyst volume
 (for a given cell density, Pt loading, wash coat, etc)
- Once catalyst volume is determined
 - Changing duct size results in thicker or thinner catalyst (to maintain volume)
 - Large frontal area and thin vs. small area and thick
- However, 100 ft³ of catalyst in 100 modules costs less than 100 ft³ in 120 modules
- There is a practical *minimum* thickness

Performance Over Time

THE POWER OF CATALY

Origin of "Safety Factor"

- Emission performance over time is a function of system variables
 - type of combustion turbine
 - start-up profiles (no. starts/stops/yr.)
 - water injection & evap cooling
 - exhaust gas temperature
 - engine fuel composition particularly Sulfur
 - seals, leakage and bypass
 - contaminants present in engine exhaust
 - effect of engine lube oil on catalyst
- Owners don't report data over time for every combination

Thank you from EmeraChem

